16t^2+8t-156=0

Simple and best practice solution for 16t^2+8t-156=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16t^2+8t-156=0 equation:



16t^2+8t-156=0
a = 16; b = 8; c = -156;
Δ = b2-4ac
Δ = 82-4·16·(-156)
Δ = 10048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10048}=\sqrt{64*157}=\sqrt{64}*\sqrt{157}=8\sqrt{157}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{157}}{2*16}=\frac{-8-8\sqrt{157}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{157}}{2*16}=\frac{-8+8\sqrt{157}}{32} $

See similar equations:

| (6x^2)(-3^5)= | | (2)(2x+3)=34 | | (5x)°+(3x2)°=180 | | y-35=65 | | (x^2)^3= | | 52-y=174 | | -18=-3+5u | | 5t^2-62t+29=0 | | 0=-16^2+12t+6 | | 5/21=h/27 | | (2)(2x+1)=5x-4 | | 4/5=s+6/s+4 | | (2)(3x-1)=34 | | 5t^2-15t-2=0 | | -2x+4+-1x=-17 | | -5t^2+15t+2=0 | | 15(s+-3)=12s+-43 | | 7=2+5(z+2) | | 23+-x=142 | | 115+-b=200 | | -15=k+-12 | | F(x)=2x^-7x+3 | | 32-(a/4)=16 | | (5x)^(1/2)=15 | | -6x+4+10x-7=77 | | (5x)^1/2=15 | | 3b+-5=16 | | 4y=2y10 | | 5x^2-13x-210=0 | | 16n=176 | | 6(u-2)-6=-3(-9u+3)-9u | | 6(2x+1)-5(x-3)=2(x+2) |

Equations solver categories